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Abstract - This paper shows how the future challenges of 

video compression can be met by leveraging both expertise 

in optimized compression and latest advances in artificial 

intelligence, thus spending exactly the right amount of bits 

on each piece of video information. As we envision a world 

of life-like TV, enhanced in all possible degrees of freedom, 

immersive 8K HDR WCG HFR is just knocking at our door. 

Although technology is improving at a constant pace, 

processing and transmitting such an amazing amount of 

information remains an incredible challenge. The BBC 

transmitted a UHD HDR live feed of the FIFA 2018 World 

Cup at 36 Mbps. The ATEME TITAN Live encoder does it 

already at 22Mbps and lower. Even though the future ITU-T 

ISO/IEC VVC is promising a 50% coding efficiency gain 

compared to HEVC, compression will not be enough, thus 

leading to strategies like UHD forum Phase B guidelines 

recommended content aware encoding [1].  

INTRODUCTION 

It is well known how internet media consumption grows 

continuously [2]. Regarding specifically the TV industry, 

with major new OTT services launch expected in 2019 by 

industry giants like Disney, AT&T and Apple, the OTT 

market is continuing to effectively disrupt the traditional TV 

market. OTT is now the preferred medium for very large 

audiences, including for sports events. At the same time, the 

market is very polarized, content costs are increasing, so the 

barrier for entry is not as small as one might think, and 

profitability remains a challenge. Simultaneously, video 

assets quality is continuously increasing, with 4k and 

HDR/WCG progressively becoming mainstream while 8k 

and HFR are under development. This is where efficient 

video compression SW can contribute by reducing 

distribution costs while also maximizing QoE. The BBC 

transmitted a UHD HDR live feed of the FIFA 2018 World 

Cup at 36 Mbps. ATEME TITAN Live encoder does it 

already at 22Mbps and lower. The future ITU-T ISO/IEC 

VVC is promising a 50% coding efficiency gain compared 

to HEVC. Still, strategies like UHD forum Phase B 

guidelines recommended content aware encoding [1] can 

significantly increase bandwidth savings, especially when 

relying on Artificial Intelligence (AI). 

Apple recommends fixed OTT profiles ladders for HLS 

authoring [3]. These ladders represent average sequence 

characteristics. By adapting the OTT profiles distribution 

for each content, one can take advantage of lower 

complexity content to save bitrate or identify complex 

contents to improve their visual quality. In the examples of 

Table 1, and Table 2, the result of content adaptation for 

two movies contents are reported against Apple 

recommendations. These contents are simple enough to 

significantly lower both the profiles bitrates and the number 

of profiles. Thus, content aware encoding, or content 

adaptive streaming, saves not only bandwidth, but also 

storage. One also notes that the bitrate distribution amongst 

resolutions is different from the recommendation. Indeed, 

spatial characteristics of the content can change with 

resolution. 

 
HLS ATEME content adaptive 

Resolution Bitrate (kbps) Resolution Bitrate (kbps) 

1920 x 1080 7800 - - 

1920 x 1080 6000 - - 

1280 x 720 4500 - - 

1280 x 720 3000 1920 x 1080 3269 

960 x 540 2000 1536 x 864 1892 

768 x 432 1100 1024 x 576 895 

768 x 432 730 832 x 468 530 

640 x 360 365 640 x 360 289 

416 x 234 145 - - 

TABLE 1: AN EXAMPLE OF CONTENT ADAPTED OTT PROFILES COMPARED 

TO HLS RECOMMENDATION FOR H.264/AVC. 

 
HLS ATEME content adaptive 

Resolution Bitrate (kbps) Resolution Bitrate (kbps) 

3840 x 2160 16800 - - 

3840 x 2160 11600 - - 

2560 x 1440 8100 3840 x 2160 8687 

1920 x 1080 5800 - - 

1920 x 1080 4500 2560 x 1440 3996 

1280 x 720 3400 - - 

1280 x 720 2400 1920 x 1080 2324 

960 x 540 1600 - - 

960 x 540 900 1280 x 720 1114 

960 x 540 600 960 x 540 673 

768 x 432 300 640 x 360 328 

640 x 360 145 480 x 270 201 

TABLE 2: AN EXAMPLE OF CONTENT ADAPTED OTT PROFILES COMPARED 

TO HLS RECOMMENDATION FOR HEVC/H.265. 

 

The examples of Table 1 and Table 2 are not unique. 

Another content adaptive compression tool might generate 

another set of profiles perfectly consistent, depending on the 

codec used and external constraints. The goal of this paper 

is to provide technical input on content adaptive challenges, 

directions on how a content adaptive compression system 

can be implemented, and how AI can be helpful. It will 

illustrate how the above examples have been generated, as 



well as how future contents and set of constraints could be 

handled. This paper is primarily focused on file encoding 

for VOD, but some of the concepts described also apply to 

live OTT. 

In the rest of the paper, numerical data has been 

generated using the two contents “Polynésie”, in 8k 50fps 

HDR PQ and “Tour de France”, in 4k 100fps HDR HLG, 

kindly provided respectively by The Explorers [4] and 

A.S.O. [5], and illustrated on Figure 1. 

 

   
FIGURE 1: TESTS SEQUENCES “POLYNÉSIE”, IN 8K 50FPS HDR PQ AND 

“TOUR DE FRANCE”, IN 4K 100FPS HDR HLG. 

GENERAL PURPOSE CONTENT ADAPTIVE 

FRAMEWORK 

I. Quality/rate optimization 

The first idea of content adaptive encoding is to provide the 

best possible quality whatever the bitrate. It is well known 

that one cannot decrease encoding quality indefinitely. It is 

necessary to decrease the content resolution at some point. 

This fact is illustrated on Figure 2. This kind of graph is 

used classically to illustrate content adaptive encoding [6], 

[7], though 8k is seldom considered. One can easily notice 

the bitrate points at which it is relevant to change resolution 

for optimal quality encoding. Thus, the ideal set of profiles 

is spread along the maximal convex hull of all the curves. 

Although very practical, such a graph raises several 

questions. 

 

 
FIGURE 2: SET OF RATE-QUALITY CURVES FOR RESOLUTIONS RANGING 

FROM 480X270 TO 8K. 

 

First, the quality index (QI) must be defined, as it is at 

the very heart of the method. Not only the ability to model 

actual human perceived quality, but also the universality of 

the quality index must be questioned. In the case of Figure 

2, only resolution is considered because it is the most 

straightforward example. Perception of resolution is well 

studied [8] and several quality metrics exhibit consistent 

behavior against varying resolution, such as scaled-PSNR or 

VMAF [9]. However, resolution perception is highly 

dependent on covered visual angle, or in other words, 

combination of size and distance to the screen. Graphs such 

as Figure 2 are generally built with fixed to maximum 

screen size in mind. Hence a lower QI attributed to HD 

compared to 8k. But if the content is watched on a 

smartphone, HD might get the highest QI mark, as 4k and 

8k would not bring any perceivable improvement. Figure 2 

become trickier to draw and use in that case. Nonetheless, 

the resolution remains the most effective way of acting on 

bitrate, as illustrated by Figure 3(a). One must note that the 

bitrate ratios are more prominent on the lowest resolutions. 

It fits nicely with the fact that resolution increase perception 

also depends on resolution. The higher the resolution, the 

less perceivable is a resolution increase. For content 

adaptive profiles computations, it means that more 

intermediate resolutions are needed for small than for large 

resolutions. 

 

     
     (A)                                                              (B) 

FIGURE 3: HEVC BITRATE INCREASE RATIO WHEN DOUBLING (A) 

HORIZONTAL AND VERTICAL RESOLUTION FOR RESOLUTIONS RANGING 

FROM 480X270 TO 4K, OR (B) TEMPORAL RESOLUTION FOR FRAMERATES 

RANGING FROM 12.5 TO 50 FPS. 

 

The impact of framerate on perceived quality is far less 

documented than resolution. Studies exist nonetheless [10]. 

As for resolution, framerate perception depends on screen 

size and viewing distance, but also highly on motion 

characteristics of the content. Generally speaking, very low 

framerates are easily identified as impairing the perceived 

quality. Very high framerates, on the other hand, as soon as 

there is significant motion in the scene, bring eye-catching 

sharpness and a dramatically increased feeling of reality. 

This is difficult to transpose into a numerical mark, also 

consistent with resolution. In the examples of Figure 4, 

Figure 5 and Figure 6, a quality index has been developed 

and tuned by ATEME for handling both resolution and 

framerate. Figure 4 is similar to Figure 2 except for the 

number of resolutions illustrated, only 3, and the framerate 

100fps. Figure 5 is built on the same principle, except that 

framerate is varying instead of resolution. The result seems 

consistent. Thresholds appear under which it is better to 

lower the framerate rather than compressing more. Curves 

also have a larger overlapping area than for resolution. The 

impact of framerate on the compression efficiency is 

actually very different from resolution. Increasing the 

framerate does not only augment the amount of data, it also 

makes the frames closer to each other and sharper thanks to 



shorter shutter speed. Finally, the augmented amount of data 

is counterbalanced by better temporal prediction during 

compression. And the higher the framerate, the more 

prominent this effect, as illustrated by Figure 3(b). 

 

 
FIGURE 4: SET OF RATE-QUALITY CURVES FOR RESOLUTIONS RANGING 

FROM 960X540 TO 4K. 

 

 
FIGURE 5: SET OF RATE-QUALITY CURVES FOR FRAMERATE RANGING FROM 

25 TO 100 FPS. 

 

 
FIGURE 6: SET OF RATE-QUALITY CURVES FOR RESOLUTIONS RANGING 

FROM 960X540 TO 4K AND FRAMERATE RANGING FROM 25 TO 100 FPS. 

 

Figure 6 illustrates the combination of both resolution 

and framerate variations. One can spread profiles along the 

maximal convex hull of the curves and reach a consistent 

content adapted profiles allocation. However, curves tend to 

be very close to each other and in some situations, these 

curves might fall inside each other’s error margins. On the 

other hand, the bitrate gain brought by decreasing framerate 

is limited, as shown on Figure 3(b). 

In summary, framerate effect on perceptual quality 

doesn’t evaluate as compression artifacts or resolution loss, 

and there is no doubt it would benefit from further studies. 

Nonetheless high framerate brings valuable perceptual 

improvement for content with significant motion, at a 

limited bitrate cost. Therefore, one should avoid decreasing 

framerate except for small resolutions, on which high 

framerate brings less perceptual improvement compared to 

resolution. 

All the results presented so far have been computed on 

HDR contents. But what is the cost of HDR, and is it 

relevant to consider it in content adaptive profiles 

optimization? For the cost, Apple’s recommendation for 

HLS [3] considers a bitrate increase of 20%. Our 

experimental observations are matching this figure overall. 

Interestingly, it has been observed that this ratio varies 

depending not only on sequences, but also on bitrate and 

resolution, so there is room for further analysis here. 

Regarding perception, viewers should theoretically benefit 

from HDR whatever the resolution and framerate, as long as 

the display used is HDR enabled and the ambient lighting is 

not overly impacting. Nonetheless, it makes sense 

considering disabling HDR at some point in a profiles 

ladder in order to convert 20% of bitrate into a slightly 

higher resolution. 

 

II. Quality model for content adaptive encoding? 

Video quality assessment (VQA) is a thoroughly studied 

topic [11], [12]. Recent advances such as VMAF [9] 

benefits from the dramatic progress of machine learning, 

deep learning or generally speaking, artificial intelligence 

(AI). Even no reference VQA, a particularly challenging 

task, is making good progress thanks to AI [13]. However, 

VQA remains an open research area and the focus of a large 

research community. It is safe to assume there is currently 

still no perfect universal metric. 

It has been shown in the previous section that in the 

context of content adaptive encoding for OTT application, it 

is of paramount importance to have, if not a universal 

metric, at least some reliable ways to evaluate perceived 

quality of encoding assets in the presence of resolution, 

framerate and color gamut variations. ATEME’s strategy to 

achieve this goal is to decompose the quality index into 

several quality descriptors forming together a feature vector. 

Let’s assume for instance that one encodes a 4k / 100fps / 

HDR asset into an HD / 50 fps / SDR stream at a given rate. 

Instead of computing a single quality index as commonly 

considered, a quality vector (QV) is derived containing: 

• Encoding quality (EQ), the quality of the encoded 

stream compared to the actual HD / 50 fps / SDR 

encoder input. 

• Spatial index (SI), the perceived quality loss 

incurred by resolution down-sampling, as a 



function of viewing parameters and content spatial 

features. 

• Temporal index (TI), the perceived quality loss 

incurred by framerate reduction, as a function of 

viewing parameters and content motion analysis. 

• Dynamic range index (DRI), the perceived quality 

loss of tone-mapping to SDR as a function of 

content dynamic range characteristics. 

• Color gamut index (CGI), the perceived quality 

loss of reducing the color gamut as a function of 

content color characteristics. 

In short: QV = < EQ, SI, TI, DRI, CGI>. 

Thanks to this problem decomposition, each feature of 

QV can be studied separately. The full derivation of each 

index is beyond the scope of this paper, but the principle is 

the same for each. A training base is defined and annotated 

manually. Relevant features are extracted from the training 

base contents, as for instance motion fields for deriving 

temporal index. A machine learning algorithm is then 

trained on this data. The problem decomposition and 

features selection help keeping the learning reasonably 

deep. It is still possible to train a single quality metric, as a 

function of QV. The ATEME Quality Index (AQI) is 

defined as a function of QV and visual angle coverage. 

As shown in the previous section, an ideal set of 

profiles may be chosen from a large set of quality / rate 

points, lying on an optimal convex hull. This raises two 

questions.  

First, how to generate efficiently a large amount of 

quality / rate points? Some state-of-the-art approaches 

actually encode several times the asset to observe a 

posteriori quality / rate points. This strategy is of course 

highly CPU intensive. We prefer estimating quality / rate 

points, thanks to deep learning. Thus, using the previously 

mentioned learning base, and associated computed QV, it is 

possible to train a deep learning algorithm to estimate the 

QV for any input content. 

Secondly, how to plot 2D-points and extract some 

convex hull when the quality has become multi-

dimensional? It is indeed much more difficult, unless one 

forgets about QV and relies on AQI. Instead of that ATEME 

proposes a different and more general approach, not relying 

on machine learning this time, but on a more classical trellis 

optimization. 

III. Trellis optimization 

Let us first provide a reduced example, without loss of 

generality. Suppose a trellis has been built, as shown on 

Figure 7. Each node is labelled with a resolution, a bitrate 

and an AQI score, respectively. Each vertex represents a 

valid transition between two profiles. Given any design 

criteria, one can derive the optimal path in the trellis relative 

to that criteria. For instance, the upper part highlighted path 

of Figure 7 maximizes the profiles perceptual quality, while 

the lower part highlighted path minimizes the overall 

profiles storage cost. The point is that given a trellis 

corresponding to an asset, one can generate an optimal set 

of profiles following any arbitrary constraint. Let’s assume 

that the user requires an 1280x720 profile, then the path 

corresponding to the minimal storage cost is easily modified 

accordingly. 

 

 
FIGURE 7: CONTENT ADAPTIVE TRELLIS OPTIMIZATION EXAMPLE. 

 

The heart of this optimization lay in the trellis design. 

The trellis is built such that all paths respect a set of 

constraints forcing the corresponding set of profiles to be 

consistent. Basically, one can think about a fully connected 

trellis built with all the available points repeated on several 

layers up to a given maximum of layers. A pruning process 

is then applied to reduce the trellis to only the so-called 

valid paths. Once again, it is beyond the scope of the paper 

to describe extensively the whole process. Still, the design 

criterion allowing to determine the valid nodes and vertices 

summarize as follows: 

• Monotonicity in all dimensions (rate, resolutions, 

framerate, dynamic range, AQI, QV elements). 

• Significant enough rate step, in order to ensure 

enough margin for network adaptation. 

• Seamless quality transition i.e. making sure that 

when a player transitions from one profile to 

another, it will not be noticeable. 

• Sufficient encoding quality. Basically, any node 

with an EQ lower than a given threshold will be 

removed. 

IV. Summary 

The proposed process is summarized by Figure 8. First, the 

asset is analyzed thanks to AI. Let us remind here that two 

AI-based processes are involved. One for a-posteriori with 

reference quality evaluation and one another for a-priori 

quality estimation. As a result, a large set of possible rate / 

quality points is available. Each point stores a rate, a codec, 

a resolution, a framerate, a dynamic range, an AQI and a 

QV. Second, a trellis modeling all the possible profiles set is 

built. An optimal path in the trellis is derived depending on 

any arbitrary constraint and optimization criterion. Finally, 

encodings are performed for the selected profiles. One must 

note that his system handles either CBR or VBR. 

This proposed strategy has many advantages. It is 

reasonably complex, as the initial machine learning problem 

has been broken down into several smaller problems and 

trellis model is very efficient. Classical convex hull 

approach is in fact a sub-product of the model (AQI 

maximization). The consistency of the set of profiles is 

guaranteed by construction. And finally, it is highly flexible, 

as any arbitrary constraint can be integrated, such as 



mandatory or forbidden profiles, player constraints and so 

on. All these features make the system highly future-proof. 

 

 
FIGURE 8: ATEME CONTENT ADAPTIVE ENCODING PROCESS. 

 

As an illustration of its flexibility, the framework has 

been applied on the two sequences used all along this paper. 

The codec has been fixed to HEVC, and a maximum 

mandatory resolution and a minimum mandatory bitrate 

have been provided as constraints. The resolution, framerate 

and dynamic range have been left to the framework to be 

tuned automatically. Table 3 presents the result obtained on 

the sequence Polynésie. The profiles ladder looks usual, 

except for the resolution spanning a very wide range. 

Resolution is decreasing smoothly along with bitrate, while 

framerate is decreased only for the lowest profiles. 

 
Codec Resolution Fps Dynamic range Bitrate (kbps) 

HEVC 7680x4320 50 HDR 17606 

HEVC 3840x2160 50 HDR 6924 

HEVC 2560x1440 50 HDR 3095 

HEVC 1920x1080 50 HDR 1755 

HEVC 1280x720 50 HDR 1054 

HEVC 960x540 50 HDR 642 

HEVC 640x360 25 HDR 383 

HEVC 480x270 25 HDR 224 

TABLE 3: CONTENT ADAPTED SET OF PROFILES FOR SEQUENCE POLYNÉSIE. 

 

A less usual result is obtained on the Tour de France 

sequence, as shown in Table 4. This is a sport sequence in 

which motion plays an important role, combined with a high 

level of spatial details. On the other hand, the rainy weather 

brings less emphasis on HDR. These features are identified 

by the deep learning-based analysis phase. Thus, the 

automatic profile recommendation tends to favor high 

framerate, followed by resolution, while the HDR feature is 

dropped very early as bitrate decreases. 

 
Codec Resolution Fps Dynamic range Bitrate (kbps) 

HEVC 3840 x 2160 100 fps HDR 20477 

HEVC 2560 x 1440 100 fps HDR 9697 

HEVC 1920 x 1080 100 fps SDR 5859 

HEVC 1280 x 720 100 fps SDR 3649 

HEVC 1280 x 720 50 fps SDR 2381 

HEVC 960 x 540 50 fps SDR 1564 

HEVC 960 x 540 50 fps SDR 1042 

TABLE 4: CONTENT ADAPTED SET OF PROFILES FOR SEQUENCE TOUR DE 

FRANCE. 

 

Additionally, to rate, resolution, framerate and dynamic 

range adaptation, the proposed framework could even 

handle codec switching if necessary. It would be also 

possible to derive a single set of profiles addressing several 

possible screen sizes. 

CONCLUSION 

In this paper, an analysis of the general perceptual features 

of current and up-coming video contents is provided. From 

that analysis, a generic content adaptive encoding 

framework is derived, relying both on artificial intelligence 

and trellis optimization algorithms. The main advantages of 

the proposed framework are its optimal adaptation to any 

content, including UHD 8k, HFR and HDR using any codec 

such as HEVC, AV1 or VVC, and its ability to enforce any 

arbitrary constraint. As such, the proposed framework is 

highly future-proof. Future works to be presented includes 

live content adaptation and player side optimizations. 
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