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Introduction

Introduction

Reduced-reference VQA (RR-VQA)

@ With all the available encoding options and trade-offs to consider in HT TP Adaptive Streaming
(HAS),! having a lightweight and reliable VQA method is crucial.

@ The advantage of RR-VQA lies in its ability to evaluate video quality using limited information, making
it more suitable for real-time VQA, especially in adaptive streaming or live broadcast scenarios.?
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Figure: The structure of state-of-the-art RR-VQA methods utilized, especially within streaming video
coding systems.
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Correlation between VQA metrics

o
o _ §
m =
Tyl
3 s g
—_ o
Tw g N
= S =2
= — E ]
o = = =
= =]
AgS ™
m Beauty ) —— Beauty =2 —— Beauty
rtv:'l ——— Basketball — —— Basketball —— Basketball
—— Characters g- —— Characters —— {Characters
4 —— Runners " Runners = Runners
| L THa 6 10 ——gt 15— 1 e N 1oL
Bitrate (in kbps) Bitrate (in kbps) Bitrate (in kbps)
(a) PSNR (b) SSIM (c) VMAF

Figure: Rate-distortion (RD) curves of selected segments of different spatiotemporal complexities — Beauty
(Ey =59.90, h =17.49, Ly =89.25), Basketball (Ey =15.30, h =12.59, Ly =108.18), Characters (Evy
=45.42, h =36.88, Ly =134.56), and Runners (Ey =105.85, h =22.48, Ly =126.60). The segments
are downsampled to 30 fps and encoded with the x264 AVC encoder using ultrafast preset and CRF rate
control.
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Table: Pearson Correlation of VQA metrics.

Metric | PSNR | SSIM | VMAF
PSNR 1.00 0.70 0.83
SSIM 0.70 1.00 0.88
VMAF | 0.83 0.88 1.00

@ The expected computation time should be comparable to PSNR and SSIM, with the highest
possible accuracy compared to the VMAF score.

@ The proposed VQA method is expected to replace the state-of-the-art VMAF computation

in streaming applications.
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VQ-TIF
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Figure: VQA for a video segment using VQ-TIF model envisioned in this paper.

@ frame-wise texture information extraction for each chunk
© SSIM calculation

© texture information fusion, where the features and the computed SSIM are fused using an
LSTM-based model to determine the VQ-TIF score for each chunk
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VQ-TIF Texture information extraction

VQ-TIF

Texture information extraction

Three DCT-energy-based features, the average luma texture energy Ey, the average gradient of

the luma texture energy h, and the average luminescence Ly are used as the texture information
3,4

measures.

(a) original frame (b) Ev (c) h
Figure: Heatmap depiction of the luma texture information {Ey, h, Ly } extracted from the second frame
of CoverSong_1080P_0a86 video of Youtube UGC Dataset.”
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VQ-TIF

Spatial pooling

The video segments are divided into T chunks with a fixed number of frames (i.e., f.). The
averages of the Ev, h and Ly features of each frame in the chunk are calculated to obtain the
spatially pooled representation of the chunk, expressed as:

X = {Xl,XQ.}..,Xf:}.} (1)
X = {&1,%, .., R}, (2)

where x; and X; are the it" frame feature set associated with the original and reconstructed
video chunks, respectively.

Xf — [EH hl":- Lfi]a (3)
i =[Ei, hi,[;] Viell, f] (4)
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VQ-TIF

Residual computation

Residual features are formed by subtracting the original video texture information features from
the reconstructed video features. This difference i1s known as the error or residual feature,
expressed as:

A

= E; — E; (5)
— h; — h; (6)
=L; — L (7)

where | € [1, f¢].

The residual features usually have low information entropy, as the original and reconstructed
video frames are similar. The entropy increases with increased distortion introduced in the
reconstructed video.
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VQ-TIF Texture Information Fusion

@ The fusion of the texture information features is established using a long short-term memory
(LSTM).

@ Frame-wise SSIM values denoted by S = {s;1, s>, ..,s¢ } are appended to the residual fea-
tures.

@ [ he prediction model is a function of the residual features of the frames and the SSIM
values in a chunk, as shown below:

% = [rilsi]” i€l f] (8)

where r; = [rg., rn., r1.].
The estimated VQ-TIF score per chunk ¥ can be presented as:

0= f(%). (9)

The VQ-TIF score of the reconstructed video segment is the average of the v values estimated
for every chunk.
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the LSTM model

@ SSIM feature contributes the most to the VQ-TIF estimation, followed by rg, r,, and n
features.

@ The average PCC of the VQ-TIF scores to the VMAF score in the evaluation dataset is
0.96, while MAE is 2.71.
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@ [he computation speed of VQ-TIF is 9.14 times higher than the state-of-the-art VMAF
evaluation.

@ In terms of total energy consumption, VQ-TIF saves 89.44 % compared to the state-of-the-
art VMAF implementation.
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Conclusions

@ We proposed VQ-TIF, a fast and accurate reduced-reference video quality assessment (RR-
VQA) method based on texture information fusion.

@ VQ-TIF includes DCT-energy-based video complexity feature extraction where features rep-
resenting luma texture and temporal activity are extracted from the original and recon-
structed video segments.

@ The extracted texture information is fused using an LSTM-based model to determine the
VQ-TIF score.

@ VQ-TIF is determined at a speed of 9.14 times faster than the state-of-the-art implemen-
tation of VMAF for Ultra HD (2160p) videos, consuming 89.44 % less energy. At the same
time, VQ-TIF scores yield a PCC of 0.96 and MAE of 2.71 compared to the VMAF scores.
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Limitations and future directions

@ The evaluation of the proposed VQ-TIF model is limited to static dynamic range (SDR)
content.

@ VQ-TIF model can be extended to determine visual quality at multiple resolutions, including
8K (4320p).

@ Various signal distortions may be considered during the model training to enhance the
application scope.
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Thank you for your attention!

Vignesh V Menon (vignesh.menon@hhi.fraunhofer.de)
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